New results in the perturbation theory of maximal monotone and $M$-accretive operators in Banach spaces

Author:
Athanassios G. Kartsatos

Journal:
Trans. Amer. Math. Soc. **348** (1996), 1663-1707

MSC (1991):
Primary 47H17; Secondary 47B44, 47H09, 47H10

DOI:
https://doi.org/10.1090/S0002-9947-96-01654-6

MathSciNet review:
1357397

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a real Banach space and $G$ a bounded, open and convex subset of $X.$ The solvability of the fixed point problem $(*)~Tx+Cx \owns x$ in $D(T)\cap \overline {G}$ is considered, where $T:X\supset D(T)\to 2^{X}$ is a possibly discontinuous $m$-dissipative operator and $C: \overline {G}\to X$ is completely continuous. It is assumed that $X$ is uniformly convex, $D(T)\cap G \not = \emptyset$ and $(T+C)(D(T)\cap \partial G)\subset \overline {G}.$ A result of Browder, concerning single-valued operators $T$ that are either uniformly continuous or continuous with $X^{*}$ uniformly convex, is extended to the present case. Browder’s method cannot be applied in this setting, even in the single-valued case, because there is no class of permissible homeomorphisms. Let $\Gamma = \{\beta :\mathcal {R}_{+}\to \mathcal {R}_{+}~;~\beta (r)\to 0\text { as }r\to \infty \}.$ The effect of a weak boundary condition of the type $\langle u+Cx,x\rangle \ge -\beta (\|x\|)\|x\|^{2}$ on the range of operators $T+C$ is studied for $m$-accretive and maximal monotone operators $T.$ Here, $\beta \in \Gamma ,~x\in D(T)$ with sufficiently large norm and $u\in Tx.$ Various new eigenvalue results are given involving the solvability of $Tx+ \lambda Cx\owns 0$ with respect to $(\lambda ,x)\in (0,\infty )\times D(T).$ Several results do not require the continuity of the operator $C.$ Four open problems are also given, the solution of which would improve upon certain results of the paper.

- Ja. I. Al′ber,
*The solution of nonlinear equations with monotone operators in a Banach space*, Sibirsk. Mat. Ž.**16**(1975), 3–11, 195 (Russian). MR**0370285** - Viorel Barbu,
*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843** - P. Bénilan,
*Équations d’Évolution dans un Espace de Banach Quelconque et Applications*, Thése, Orsay, 1972. - H. Brezis, M. G. Crandall, and A. Pazy,
*Perturbations of nonlinear maximal monotone sets in Banach space*, Comm. Pure Appl. Math.**23**(1970), 123–144. MR**257805**, DOI https://doi.org/10.1002/cpa.3160230107 - Felix E. Browder,
*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1–308. MR**0405188** - Bruce D. Calvert and Chaitan P. Gupta,
*Nonlinear elliptic boundary value problems in $L^{p}$-spaces and sums of ranges of accretive operators*, Nonlinear Anal.**2**(1978), no. 1, 1–26. MR**512651**, DOI https://doi.org/10.1016/0362-546X%2878%2990038-X - Ioana Cioranescu,
*Geometry of Banach spaces, duality mappings and nonlinear problems*, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR**1079061** - Klaus Deimling,
*Zeros of accretive operators*, Manuscripta Math.**13**(1974), 365–374. MR**350538**, DOI https://doi.org/10.1007/BF01171148 - Klaus Deimling,
*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404** - Z. Ding and A. G. Kartsatos,
*Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces*, Nonlinear Anal.**25**(1995), 1333–1342. - Z. Ding and A. G. Kartsatos,
*P-Regular mappings and alternative results for perturbations of $m$-accretive operators in Banach spaces*, Topol. Meth. Nonl. Anal. (to appear). - P. M. Fitzpatrick and W. V. Petryshyn,
*On the nonlinear eigenvalue problem $T(u)=\lambda C(u)$, involving noncompact abstract and differential operators*, Boll. Un. Mat. Ital. B (5)**15**(1978), no. 1, 80–107 (English, with Italian summary). MR**498682** - Zhengyuan Guan,
*Ranges of operators of monotone type in Banach space*, J. Math. Anal. Appl.**174**(1993), no. 1, 256–264. MR**1212931**, DOI https://doi.org/10.1006/jmaa.1993.1115 - Zhengyuan Guan,
*Solvability of semilinear equations with compact perturbations of operators of monotone type*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 93–102. MR**1174492**, DOI https://doi.org/10.1090/S0002-9939-1994-1174492-4 - Z. Guan and A. G. Kartsatos,
*Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces*, Houston J. Math.**21**(1995), 149-188. - Z. Guan and A. G. Kartsatos,
*On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces*, Nonlinear Anal. (to appear). - Zhengyuan Guan and Athanassios G. Kartsatos,
*Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**347**(1995), no. 7, 2403–2435. MR**1297527**, DOI https://doi.org/10.1090/S0002-9947-1995-1297527-2 - Chaitan P. Gupta and Peter Hess,
*Existence theorems for nonlinear noncoercive operator equations and nonlinear elliptic boundary value problems*, J. Differential Equations**22**(1976), no. 2, 305–313. MR**473942**, DOI https://doi.org/10.1016/0022-0396%2876%2990030-9 - N. Hirano and A. K. Kalinde,
*On perturbations of $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc. (to appear). - D. R. Kaplan and A. G. Kartsatos,
*Ranges of sums and control of nonlinear evolutions with preassigned responses*, J. Optim. Theory Appl.**81**(1994), 121-141. - Athanassios G. Kartsatos,
*Zeros of demicontinuous accretive operators in Banach spaces*, J. Integral Equations**8**(1985), no. 2, 175–184. MR**777969** - Athanassios G. Kartsatos,
*On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**119**(1993), no. 4, 1189–1199. MR**1216817**, DOI https://doi.org/10.1090/S0002-9939-1993-1216817-6 - A. G. Kartsatos,
*Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces*, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter De Gruyter, New York, (1995), pp. 2197-2222. - Athanassios G. Kartsatos,
*Sets in the ranges of sums for perturbations of nonlinear $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**123**(1995), no. 1, 145–156. MR**1213863**, DOI https://doi.org/10.1090/S0002-9939-1995-1213863-5 - A. G. Kartsatos,
*On the construction of methods of lines for functional evolutions in general Banach spaces*, Nonlinear Anal.**25**(1995), 1321-1331. - A. G. Kartsatos,
*A compact evolution operator generated by a time-dependent $m$-accretive operator in a general Banach space*, Math. Ann.**302**(1995), 473-487. - A. G. Kartsatos,
*Sets in the ranges of nonlinear accretive operators in Banach spaces*, Studia Math.**114**(1995), 261-273. - A. G. Kartsatos,
*On the perturbation theory of $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc. (to appear). - A. G. Kartsatos and X. Liu,
*Nonlinear equations involving compact perturbations of $m$-accretive operators in Banach spaces*, Nonlinear Anal.**24**(1995), 469-492. - A. G. Kartsatos and R. D. Mabry,
*Controlling the space with preassigned responses*, J. Optim. Theory Appl.**54**(1987), no. 3, 517–540. MR**906167**, DOI https://doi.org/10.1007/BF00940200 - V. Lakshmikantham and S. Leela,
*Nonlinear differential equations in abstract spaces*, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR**616449** - N. G. Lloyd,
*Degree theory*, Cambridge University Press, Cambridge-New York-Melbourne, 1978. Cambridge Tracts in Mathematics, No. 73. MR**0493564** - Ivar Massabò and Charles A. Stuart,
*Positive eigenvectors of $k$-set contractions*, Nonlinear Anal.**3**(1979), no. 1, 35–44 (1978). MR**520468**, DOI https://doi.org/10.1016/0362-546X%2879%2990031-2 - M. Nagumo,
*Degree of mapping in convex linear topological spaces*, Amer. J. Math.**73**(1951), 497-511. - Dan Pascali and Silviu Sburlan,
*Nonlinear mappings of monotone type*, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR**531036** - Simeon Reich,
*Extension problems for accretive sets in Banach spaces*, J. Functional Analysis**26**(1977), no. 4, 378–395. MR**0477893**, DOI https://doi.org/10.1016/0022-1236%2877%2990022-2 - E. H. Rothe,
*Introduction to various aspects of degree theory in Banach spaces*, Mathematical Surveys and Monographs, vol. 23, American Mathematical Society, Providence, RI, 1986. MR**852987** - I. V. Skrypnik,
*Methods for analysis of nonlinear elliptic boundary value problems*, Translations of Mathematical Monographs, vol. 139, American Mathematical Society, Providence, RI, 1994. Translated from the 1990 Russian original by Dan D. Pascali. MR**1297765** - M. M. Vainberg,
*Variational methods for the study of nonlinear operators*, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR**0176364** - I. I. Vrabie,
*Compactness methods for nonlinear evolutions*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. With a foreword by A. Pazy. MR**932730** - Eberhard Zeidler,
*Nonlinear functional analysis and its applications. II/B*, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR**1033498**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
47H17,
47B44,
47H09,
47H10

Retrieve articles in all journals with MSC (1991): 47H17, 47B44, 47H09, 47H10

Additional Information

**Athanassios G. Kartsatos**

Affiliation:
Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

Email:
hermes@gauss.math.usf.edu

Keywords:
$m$-accretive operator,
maximal monotone operator,
compact perturbation,
compact resolvent,
eigenvalues for nonlinear operators,
fixed point theory,
degree theory

Received by editor(s):
February 7, 1995

Additional Notes:
The results of this paper were announced in a lecture at the International Conference on Nonlinear Differential Equations, Kiev, Ukraine, August 21-27, 1995.

Article copyright:
© Copyright 1996
American Mathematical Society